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Summary

Using the recurrence risk ratio (λ), Risch (1990b) indicated that affected pairs of distant relatives are preferable
to affected sib-pairs for linkage analysis when λ is large and the mode of inheritance is additive. By using the
optimum test for affected sib-pairs instead of the test used by Risch (1990b), the range of values of λ for which
the affected sib-pair design has larger or smaller power than other pairs is clarified. Risch’s conclusion remains true
when λO > 2.5, however, sib-pairs have larger power for lower values. As affected sib-pairs occur smore frequently
than other relative pairs, when ascertainment costs are non-negligible, they may be the most cost-effective relative
pairs to use.

In his seminal article Risch (1990b) demonstrated that
affected pairs of distant relatives provide more power
in studies of linkage than affected sib-pairs. This report
points out that the test used to analyze affected sib pairs
was not the optimal one (Knapp, 1994). For affected
sib-pair data we show that the means test (Blackwelder
& Elston, 1985), the locally optimum one for the ad-
ditive model considered by Risch, is nearly equivalent
to the likelihood ratio test derived from the Neyman-
Pearson (NP) theory and has noticeably improved power
over the test studied by Risch. For all types of relative
pairs, Risch used a test based on n0 (the number of these
pairs having no allele IBD). Except for affected sibs, this
procedure is the optimum test because they can only
share 0 or 1 allele IBD. In order to compare the power
of various statistical designs, one should use the opti-
mum test for each design under consideration. While
Risch’s conclusion that for the additive mode of in-
heritance and large genetic effects, e.g. λS = λO ≥ 3,
distant relative pairs can provide more power is cor-
rect, our results show that for small to modest effects
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(λO ≤ 2.5) the affected sib-pair design is preferable.
Here, λS is the recurrence risk ratio of disease in siblings
and λO is the recurrence risk ratio between a parent and
offspring (Risch, 1990a,b,c; Rybicki & Elston, 2000).
In view of recent interest in complex diseases focusing
on discovering genes with modest effects (Cardon &
Bell, 2001; Cordell, 2001; Tabor et al. 2002), this re-
sult indicates that affected sib-pairs, which are often the
most convenient relative pairs to ascertain, retain their
usefulness.

A brief review of the test used by Risch and the op-
timal test for affected sib-pair design is helpful. Un-
der the assumption that there is no dominance vari-
ance, V D = 0, the sib-pair recurrence risk ratio (λS) is
the same as that between a parent and offspring (λO),
i.e., λS = λO. Following Risch, let n0, n1, and n2 be
the number of affected sib-pairs with IBD = 0, 1, 2
at the marker locus respectively. The sample size is
N = n0 + n1 + n2. Thus, n0, n1, and n2 have a tri-
nomial distribution with probabilities:
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1
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The Power of Various Relative Pair Designs as a Function of λO and θ .

Sibs Sibs Sibs Grand P Uncle Half First
θ NP n2 − n0 n0 Grand C Nephew Sibs Cousins

λO = 1.5
n = 100

0.00 0.213 0.225 0.088 0.133 0.133 0.133 0.142
0.05 0.108 0.114 0.043 0.095 0.058 0.068 0.064
0.10 0.052 0.055 0.021 0.066 0.026 0.034 0.028
0.15 0.025 0.026 0.011 0.044 0.012 0.017 0.013
0.20 0.012 0.012 0.006 0.028 0.006 0.009 0.006
0.30 0.003 0.003 0.002 0.011 0.002 0.003 0.002
0.40 0.001 0.001 0.001 0.004 0.001 0.001 0.001

n = 200
0.00 0.592 0.599 0.334 0.395 0.395 0.395 0.367
0.05 0.338 0.345 0.160 0.290 0.178 0.209 0.168
0.10 0.162 0.167 0.071 0.201 0.071 0.098 0.068
0.15 0.070 0.071 0.031 0.131 0.028 0.043 0.027
0.20 0.028 0.029 0.014 0.080 0.011 0.019 0.011
0.30 0.005 0.005 0.003 0.025 0.003 0.004 0.003
0.40 0.002 0.002 0.001 0.006 0.001 0.001 0.001

λO = 2.5
n = 100

0.00 0.904 0.898 0.705 0.907 0.907 0.907 0.922
0.05 0.631 0.644 0.356 0.797 0.587 0.658 0.666
0.10 0.332 0.348 0.147 0.641 0.261 0.359 0.343
0.15 0.142 0.151 0.057 0.462 0.092 0.156 0.134
0.20 0.054 0.057 0.022 0.296 0.031 0.059 0.046
0.30 0.008 0.008 0.004 0.081 0.004 0.008 0.006
0.40 0.002 0.002 0.001 0.013 0.001 0.002 0.002

n = 200
0.00 1.000 0.999 0.995 0.999 0.999 0.999 0.999
0.05 0.973 0.97 0.872 0.995 0.952 0.974 0.959
0.10 0.78 0.782 0.522 0.969 0.66 0.794 0.719
0.15 0.431 0.439 0.217 0.886 0.283 0.451 0.349
0.20 0.169 0.173 0.074 0.714 0.088 0.179 0.118
0.30 0.016 0.016 0.008 0.25 0.008 0.017 0.01
0.40 0.002 0.002 0.002 0.03 0.002 0.002 0.002

λO = 5.0
n = 100

0.00 1.000 0.999 0.999 1.000 1.000 1.000 1.000
0.05 0.962 0.953 0.840 1.000 0.991 0.997 0.999
0.10 0.706 0.715 0.430 0.996 0.792 0.903 0.936
0.15 0.353 0.370 0.159 0.963 0.372 0.574 0.628
0.20 0.133 0.141 0.053 0.840 0.117 0.239 0.257
0.30 0.014 0.014 0.007 0.330 0.009 0.021 0.019
0.40 0.002 0.002 0.002 0.038 0.002 0.002 0.002

n = 200
0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 0.988 0.985 0.925 1.000 0.994 0.999 0.999
0.15 0.805 0.806 0.553 1.000 0.808 0.947 0.944
0.20 0.407 0.415 0.202 0.997 0.351 0.623 0.593
0.30 0.034 0.035 0.016 0.760 0.021 0.056 0.043
0.40 0.003 0.003 0.002 0.112 0.002 0.003 0.003
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where � = θ 2 + (1 − θ )2. The null hypothesis of no
linkage is H0 : θ = 1

2 and the alternative hypothesis is
Ha : θ = θ a , where θa < 1

2 is specified. Here, λO is a
given function of the prevalence of the disease and the
additive genetic variance (Risch, 1990a). The test used
by Risch (1990b) is: reject H0 when n0 ≤ Cα, where
Cα is determined by a prespecified level α. Using the
normal approximation, the power of this test is




( √
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4 zα +
√

N
(

1
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)
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)
,

where zα is αth percentile of the standard normal dis-
tribution, 
 is the distribution function of the standard
normal distribution, and N is the total number of sib-
pairs. The parameters µa and σ 2

a are:
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1
4

(1 − b ), σ 2
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1
16

(1 − b )(3 + b ),

b =
1

λO
(2�a − 1)(λO − 1), �a = (1 − θa )2 + θ 2

a .

The optimal test based Neyman-Pearson theory is:

reject H0 when n0 log(1 − b ) + n2 log(1 + b ) ≥ Cα.

The power of the optimal test is given by

1 − 
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where
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σ 2
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1
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When the alternative hypothesis approaches the null
hypothesis (i.e., θa → 1

2 ), b goes to zero (i.e., b →
0). Thus, the limiting form of the optimal test be-
comes: reject H0 if n2 − n0 ≥ C. Thus, the test statis-
tic n2 − n0 = 2n2 + n1 − N is locally optimal. Before
presenting a numerical comparison of the power of these
optimal tests and Risch’s for affected sib-pairs, it should

be noted that the tests Risch used to analyze data from
other relative pairs were optimal.

In the Table we report the power of tests using differ-
ent relative pairs studied by Risch (1990b) for various
recombination fractions (θ ). The first three columns re-
port the powers of the three tests for affected sib pairs.
The first two are the Neyman-Pearson test and the
means test and the third is the test used by Risch. Notice
that for all recurrence risk ratios (λO) studied the opti-
mal tests for affected sib pairs have greater power than
the test based on n0. Consequently, when λO ≤ 2.5 sib-
pairs provide greater power than other relative pairs. For
larger values of λO, Risch’s conclusion that studies us-
ing distant relative pairs are more powerful remains true
even when the optimum test for sib-pairs utilized.

The best choice of an affected relative pair design
depends on both the magnitude of the recurrence risk
ratio and the probability of ascertaining an affected pair
of those relatives. From Risch (1990a), for any type
of relative pair (R), the probability that members of a
random pair will be affected is λRK2, where K is the
population prevalence rate. Since λS > λR for all other
types (R) of relative pairs (Risch, 1990a), the probabil-
ity of ascertaining affected sibs is greater than that of
other types of relatives. Thus, when the screening cost
is important, the sib-pair design maybe cost-effective.
For early onset diseases where it is possible to obtain
grandparent-grandchild affected pairs that design has su-
perior power properties for a wide range of θ . This is
consistent with recent results of Weinberg (2003) indi-
cating that likelihood tests similar to TDT conditioning
on grandparental mating types have substantially greater
power compared with tests based on parents.

The above conclusion assumes that conditional on
individual’s genotype their phenotype is independent
of those of other family members. Suppose there is
an environmental factor, U, which independently can
cause the disease. If closer relatives are more likely to
be jointly exposed to U than distant relatives, then the
observed recurrence risk for closer relative pairs (sibs)
contain a larger non-genetic component than it will
for distant relatives. In this situation, a more distant rel-
ative pair study may well be preferred. On the other
hand, if the factor U is protective, then affected close
relatives provide more information about the genetic
component.
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